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Abstract. Machine Learning research and its application have gained enormous 

relevance in recent years. Their usage in medical settings could support patients, 
increase patient safety and assist health professionals in various tasks. However, 

medical data is often sparse, which renders big data analytics methods like deep 

learning ineffective. Data synthesis helps to augment small data sets and potentially 
improves patient data integrity. The presented work illustrates how Generative 

Adversarial Networks can be applied specifically to small data sets for enlarging 

sparse data. Following a state-of-the-art analysis is conducted, experimental 
methods with such networks are documented, which have been applied to three 

different data sets. Results from all three sets are presented and take-away messages 

are summarized.  Concluding, the results’ quality and limitations of the work are 
discussed.  
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1. Introduction 

In recent years, the application of artificial intelligence (AI) has gained significance in 

various fields of research. Especially machine learning (ML) has proven to be useful for 

recognizing patterns, predicting events or detecting anomalies. It is unsurprising, that 

these techniques have been applied to medical research as well.  

1.1. Motivation 

The usefulness of ML in medical contexts has not only been widely proven in recent 

academic studies [1–3], but also industry has realized its potential, with big players such 

as IBM [4], Google [5] and Microsoft [6] being very active in this field. The applications 

and executions of ML in medicine are diverse, as shown by the examples above. 

However, ML inherently requires one particular aspect for virtually all use cases: access 

to large quantities of data. Medical applications are not exempted from this situation. In 

fact, acquiring or even just accessing medical data constitutes an even more challenging 

task than in other settings. The European Union’s General Data Protection Regulation 

(GDPR) classifies medical data not only as personal data but also as sensitive data due 

to the privacy aspects involved. Therefore, health professionals and patients alike are 
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often rightly hesitant and skeptical of providing data for ML researching purposes, 

especially in the current times’ increased focus on data protection and privacy concerns. 

Synthesizing medical data thus has two inherent advantages: Firstly, the issues of data 

sparsity and diversity can be addressed by simply creating artificial data. Secondly, the 

artificial data is highly anonymized and can be used freely without privacy concerns as 

the data is not from real patients.  

1.2. State of the art 

The idea of data synthesis is not entirely new, yet research is rather sparse: A very early 

example by McSharry et al. provides a univariate ECG generation tool using a dynamic 

mathematical model [7], which was also published on PhysioNet [8] in 2003. 

Subsequently, this was further developed into a Gaussian Wave-based model by G. 

Clifford [9], a co-author of the original paper.  

Another, different example of data synthesis is Synthea [10]. Their goal is to 

generate not synthetic data of one specific type but rather entire patient records with 

realistic medical history. Synthea can model various diseases, focusing on the commonly 

occurring ones. This approach is helpful when analyzing correlations between diseases 

and assessing risk factors for future illnesses. They applied logic and rule-based 

workflows that are supported by huge amounts of real-world data and statistics.  

However, more recently, the use of Generative Adversarial Networks (GAN) 

appears to show promising results. GANs were introduced by Ian Goodfellow et al. in 

2014 [11], which fundamentally revolutionized data synthesis research. GANs are 

constructed with two artificial neural networks, that compete against each other. The first 

model – called discriminator – is provided with real examples and learns to distinguish 

between real and fake samples. The second model – called generator – mathematically 

transforms random noise to create fake data samples that are intended to fool the 

discriminator. These models learn in cycles and the constant improvement by each model 

stimulates the learning progress of the other, which stimulates the generator model to 

produce samples that match the real samples’ statistical properties. In theory, once the 

discriminator accuracy is at 50% - which means, the discriminator cannot distinguish 

between real and fake – the training process is complete. Since their introduction, GANs 

have been used for medical data generation. In 2017, a research group developed 

medGAN, that allows for the generation of multi-label patient records [12]. Another 

study created synthetic MRI images using GANs [13], which resulted in an improved 

analysis performance by augmenting a sparse dataset. In 2019, two articles were 

published, which used similar model architectures to generate artificial ECG signals [14, 

15].  

All of the examples listed above utilized access to a large-scale dataset. GANs can 

be understood as a form of deep learning, which traditionally requires high amounts of 

training data to learn effectively, and thus the demand for extensive data sets is natural. 

In terms of augmenting sparse datasets, our literature research, revealed only very limited 

results. A Chinese group enlarged a set of hepatocellular carcinoma samples varying in 

stages [16]. In total, they had 78 data samples at their disposal. They used an improved 

version of GANs, the Wasserstein GAN, which was introduced in 2017 by Martin 

Arjovsky et al. [17]. The difference is an updated loss function (Wasserstein distance), 

which estimates the models’ loss as a measure of “realness”, which is intended to 

improve and stabilize the GAN training process. In a non-medical context, another study 

used 1000 samples – which in a medical scenario would not be considered sparse - in 



their investigations into the application of GANs for sparse data sets [18]. Other studies 

have claimed to work with limited data, yet the amount of training samples used to train 

the GAN remain undisclosed, to our best knowledge [19, 20].  

1.3. This work 

This paper documents the experimental work of synthesizing univariate and multivariate 

data for a medical context using GANs. The emphasis was on applying GANs on small 

(n < 300) data sets, that are distinctively different from each other. The question to be 

answered was whether GANs can be used to augment limited data pools to improve 

machine learning algorithms and whether a “general” GAN can be designed for all types 

of time-series. Different data pre-processing steps, model architectures and training 

parameters were used to establish which aspects of GANs are especially important for 

their application in this context. The focus of this paper was also to highlight important 

lessons, that might provide valuable information for the research community.   

2. Methods 

All code was written in Python 3.7. and machine learning model building was done with 

TensorFlow and Keras. 

2.1. Data sources and preprocessing 

Three different data sources were used for this work, yet all three of them were of small 

sample sizes (n < 300). Two univariate and one multivariate time-series datasets were 

subject of synthetization with GANs. All three data sets are summarized and detailed in  

Table 1 below. Data set 2 and 3 were taken from a previously conducted clinical study. 

1) ECG data: The first dataset was comprised of ECG data [21] taken from the 

publicly available PhysioNet [8] repository “ECG-ID Database”. This dataset 

includes short-term single-lead ECG data from 90 subjects sampled at 500Hz with 

12bit resolution. In preprocessing, data was downsampled to 250Hz to reduce 

computational burden. Further, the samples were separated into sequences of 700 

datapoints (2.8s) to normalize the samples’ format. The ECG data was not scaled, 

as the signals naturally range rather reliably between +1 and -1mV.  

2) Timed Up-and-Go test data: The second dataset consisted of space-time data from 

a timed up-and-go (TUG) test device, developed at the Austrian Institute of 

Technology (AIT) [22]. It contained 138 samples of various lengths, which have 

been time-normalized by downsampling and interpolating to a uniform sequence 

length of 150, which was the rounded median length of the sequences in the data 

source. The data samples were scaled individually so that their values range 

between 0 and 1. Three samples needed to be excluded due to sensor errors, which 

results in corrupted and unusable data. 

3) Telehealth data: The third dataset has multivariate telehealth data from real patients, 

who recorded systolic and diastolic blood pressure, heart rate, bodyweight as well 

as a patient-assessed comfort score. These measures were recorded once a day 

normally, however in these samples longer breaks of no data or multiple values for 

one measure existed, usually due to hospital stays, vacations or equipment failures. 

These gaps, however, are not to be seen as mistakes or errors in this context, in fact 

they are important features and the GANs are expected to also simulate such gaps. 



The time-domain of this data was treated as a sixth channel of the data to realize 

this. Recordings of one day, but at different times were consolidated into one value 

and the data was separated into sequences of 40 data points to achieve a uniform 

data format.  
 

Table 1. Summary of the three used data sets for experimental data synthesis on small datasets. 

 ECG data TUG data Telehealth data 

Subjects 90 138 105 
Data samples 247 135 278 

Sequence length 700 150 40 

Channels 1 1 6 

2.2. Generative Model Architecture 

During the experiments, a multitude of different model architectures were investigated. 

While all models used two artificial neural networks (ANN), their nature varied in 

different trials. The following three types of networks were used either exclusively or in 

combination with each other: multilayer perceptrons (MLP), convolutional neural 

networks (CNN) and recurrent neural networks (RNN). In this section, only the final 

models will be depicted, further discussion and lessons learned can be found in the 

Discussion chapter. 

As all datasets used in this work were of different nature, complexity and dimension, 

different GANs had to be used in order to produce the wanted outcome. GANs always 

consist of a generator model and a discriminator model, which in general might use 

different model architectures. In this work, however, for each of the three datasets CNNs 

were used, despite the possibly differences in the underlying distributions. The following 

section will give more detailed information on the model architectures in the final 

experiments.  

All generators followed the same scheme: They were initiated with a fully-

connected layer where the amount of nodes matched the sequence length multiplied with 

the number of channels. The telehealth data generator was comprised of more input 

nodes to match the increased complexity of multivariate data. Afterwards, a varying 

number of convolutional layers followed, each partnered with a layer of batch 

normalization (BN) and a linear activation unit (ReLU). The final output layer was 

activated with a tanh activation function.  

In all three use cases, the same discriminator was used. Like the generator model, 

the discriminator was also utilizing a convolutional neural network architecture. After 

three one-dimensional convolutional layers, a flattening layer was applied to prepare the 

data for the final fully-connected layer with only one node for binary classification (real 

/ fake) with sigmoid activation function. Figure 1 depicts details of the used model 

architectures. In all three applications the Adam optimizer was used with a learning rate 

of 0.0002 and decay parameter β1 of 0.9. Binary crossentropy was used as the loss 

function in all models. As described earlier, the generators transformed random noise of 

a certain dimension – sometimes referred to as “latent dimension” – which they are 

provided with. In the TUG and telehealth data case, a length of 100 was chosen as latent 

dimension and the ECG generator was provided with 1000 random noise values to 

address the longer sequence length. All models were trained for 10000 epochs, during 

which both generator and discriminator are updated for different amount of times, 

establishing a ratio of learning effort between discriminator and generator. The ECG 



GAN was trained in a 1:3 (discriminator:generator) ratio, the TUG GAN was trained in 

a 1:1 ratio and the telehealth GAN in a 2:4 ratio. 

 

Figure 1. Detailed architectures of the three models. Convolutional layers are described in the format (filters, 

kernel size, strides).  

3. Results 

This chapter features examples of synthesized data created from all three data sets. It 

should be noted, that the following pictures shown are not from the GANs’ final training 

iteration. The pictures in Figure 2, Figure 3 and Figure 4 depict good examples, 

showing what the GANs are able to achieve at their top performance.  

3.1. Synthesized Data Examples 

  

Figure 2. Generated ECG data after 4850 epochs of 

training. On the left, three randomly chosen real 
examples are depicted, while the plots on the right 

show nine generated ECG signals. 

Figure 3. Generated TUG curves after 1300 

epochs of training. On the left, three randomly 
chosen real examples are depicted, while the 

plots on the right show nine generated TUG 

signals. 



 

Figure 4. Generated multivariate telehealth data after 4250 GAN training cycles. On the left, one real example 

is shown, while the on the right three generated examples are depicted. 

One should keep in mind, that the different amounts of training cycles are not 

directly comparable, as the internal ratio of training the networks lead to different 

numbers of training total training iterations. For example, after 100 iterations, the ECG 

generator was trained 300 times, the TUG generator 100 times and the telehealth 

generator 400 times. 

3.2. Lessons Learned 

As model architectures are concerned, with our data convolutional networks showed the 

best results with our data. The simpler multilayer perceptrons did not produce 

satisfactory signals, regardless of the number of nodes or the model depth. Perhaps, they 

simply lack the computational power to find the necessary relations in the data. Despite 

them being developed specifically for time-series and also being applied successfully as 

GAN generators [14, 15], RNNs did also not generate promising results. They have been 

applied as discriminators successfully, but they proved to be more computationally 

expensive without being superior in result. As generators both simple recurrent layers as 

well as long short-term-memories (LSTM) have not produced the wanted outcome. The 

main issues were extreme training instability, frequent mode collapse and noisy results.  

Although, in other studies the application of Wasserstein GANs has been reported 

to improve training stability and results [16, 17], this was not reproducible with the data 

from this study. Regardless of model architecture or model complexity, Wasserstein 

GANs delivered worse results at higher computational cost. It can be speculated that their 

application is best for image generation. 

As the layer design is concerned, the application of convolutional layers with a large 

kernel size (> 10% of sequence length) have drastically improved the quality of outcome. 

It appears, that these layers are responsible for the overall structure of the generated 

samples, designing where exactly the extracted features are located in time. 

The selection of the latent dimensions’ size was also found to impact the outcome. 

A high latent dimension constitutes more degrees of freedom for the generator, which 

results in a higher necessary training effort but also in more possibilities of generation. 

A balance needs to be found that gives the generator enough freedom to transform signals 

without providing an overwhelming amount of degrees of freedom.  

The internal training ratio also has proved to be a critical adaptation. It is a necessary 

measure to establish a balance between generator and discriminator. As the generator is 

generally provided with a more challenging task, increasing its training cycles helped to 

prevent discriminator overpowering. 



Despite all efforts, training instability could not be resolved entirely. In many cases, 

the GAN showed steady and quality progress to achieve a satisfactory result, just to 

completely deteriorate in the next epoch, sometimes without ever recovering from it. 

Currently, it is unknown why this phenomenon occurred so frequently. Perhaps, this 

could be attributed to one of the networks overfitting and thus completely throwing the 

model off balance. Another theory is that in small data sets, the selection of provided 

samples is rather small and an unlucky batch sampling leads to the model learning 

irrational features.  

Contrary to the statement made in the Introduction chapter, the discriminator 

accuracy proved to be inadequate for tracking the model’s progression. In the final, 

satisfactory result, the accuracy often was not 50% as expected but far above it, reaching 

100% in rare cases.   

4. Discussion 

4.1. Interpretation of Results 

The synthetic ECGs in Figure 2 show good qualities such as clear ECG features (P-

waves, QRS-complexes and T-waves) in a meaningful and regular frequency in 7 of the 

9 depicted examples. The commonly appearing issue of mode collapse – meaning the 

repeated generation of the exact same sample – has not been observed at this training 

level as the signals vary in amplitude (real-valued), frequency and phase shift. The two 

unsatisfactory signals appear to show the expected features, yet not in a regular fashion. 

This phenomenon was encountered during the trials with different model architectures, 

perfectly illustrated with the following example in Figure 5 below. 
 

 

 

Figure 5. ECG data with alternative architectures. Signals show ECG features but in misplaced position. 
 

This effect is attributed to a lack of temporal resolution – meaning that filter kernel 

sizes were big enough to correctly learn features but too small to place them into an 

overall correct time-series context. 

The TUG data constitutes a rather simple signal, which also led to satisfactory results, 

when assessed through visual comparison by the authors. Its usefulness must be 

determined in a follow-up study by testing them on machine learning tasks. 

In the telehealth data generation, the self-assessed comfort score was omitted during 

the synthetization due to its categorical nature (‘good’, ‘okay, ‘bad’), which proved to be 

too challenging in this context. This data set is more challenging to assess. While some 

obviously correct features are recognizable (e.g. correlation between systolic and 

diastolic blood pressure), the overall grade of realism is hard to determine. The GAN 

was able to reproduce the wanted jumps in the time-domain, simulating periods without 

data. Any other interpretations of the signals are speculation and thus the quality of this 

synthetic data will be assessed when it is used in further context. 



4.2.  Limitations and Outlook 

One important take-away from our experiments is, that currently developing a “general” 

GAN suitable for different time-series is simply unrealistic. Our experiments showed, 

that GANs should be adapted to fit the individual use case. 

The ultimate test for this synthetic data is whether it is beneficial to real machine 

learning tasks. Standard statistical evaluation is not applicable. Different similarity 

measures have been tried during this experimental process, yet no method was found that 

could generally be applied to such diverse data sets. The importance of developing a 

proper scoring system must not be underestimated and will be topic of a follow-up study. 

Two of three data sets are non-public, which reduces reproducibility of the results. 
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