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Abstract. Background: Privacy-preserving record linkage (PPRL) is the process of 

detecting dataset entries that refer to the same individual within two independent 
datasets, without disclosing any personal information. While applied in different 

fields, it particularly attained importance in the medical sector. One popular PPRL 

method are Bloom filters.  However, Bloom filters were originally used for encoding 
strings only. Objectives: This paper evaluates an encoding method specifically 

designed for numerical data and adjusts it for encoding geocoordinates in Bloom 

filters. Methods: The proposed numerical encoding of geocoordinates is compared 
to the string-based method by using synthetic data. Results: The proposed method 

for encoding geocoordinates in Bloom filters attains a higher recall and precision 

than the conventional string encoding. Conclusion: Numerical encoding has the 
potential of increasing the record linkage quality of Bloom filters, as well as their 

privacy level.  
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1. Introduction 

1.1. Privacy-preserving Record Linkage (PPRL) 

Nowadays a great quantity of personal health-related data are collected in various data 

repositories such as hospitals, clinical trials and biobanks. The data collection is mostly 

conducted for primary use, meaning that it serves the direct care of patients or to clarify 

a specific research hypothesis. However, the massive accumulation of medical data can 

also be highly useful for research, as large-scale studies can be conducted without the 

need of collecting new data. This use beyond the initial intent of direct care is called 

secondary use [1]. 

To be able to use medical data for secondary use, it needs to be aggregated from 

several sources. It is, therefore, required to combine the datasets, i.e. to identify the same 

patient within these different data sources. This process is referred to as record linkage, 

data deduplication or duplicate detection [2]. The simplest record linking approach 

would be to link records using a unique identifier. However, there is no unique patient 

identifier throughout Europe which could be used for reliable patient identification [3]. 
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Apart from that, even if a unique identifier would exist, it could not be used for secondary 

use due to privacy issues, as the data could not only be linked between different health 

data repositories, but also to other administrative data, e.g. legal or financial information. 

Consequently, non-unique identifiers, also referred to as quasi-identifiers or indirect 

identifiers, are used for record linking. These include name, date of birth, gender and 

place of birth [4]. Also, when using non-unique identifiers, it is necessary to comply with 

privacy regulations, such as the General Data Protection Regulation (GDPR) [5] in 

Europe. Therefore, the data used in the record linking process must be anonymized, or, 

with the consent of the patient, pseudonymized, to prevent unauthorized access to 

personal information. Anonymization refers to the complete deletion of all personally 

identifiable information, making it impossible to retrace the subjects. In 

pseudonymization the sensitive data are replaced by artificial identifiers called 

pseudonyms and re-identification is possible somehow. As anonymization interdicts any 

form of record linking, pseudonymization is applied in this field [1]. Record linkage 

without the disclosure of sensitive data is called privacy-preserving record linkage 

(PPRL). 

1.2. EUPID 

An example of a medical privacy-preserving record linkage system is the EUropean 

Patient IDentity (EUPID) Service [6] [7], which was developed to provide an identity 

management system for simplifying the secondary use of medical data, in particular in 

the context of rare diseases 2 . Collecting sufficient data for rare disease research is 

particularly challenging, often including several institutions. For this reason, record 

linking is applied to aggregate the data from different contexts, linking information 

referring to the same person. 

EUPID currently uses three non-unique identifiers for PPRL: first name, last name, 

and date of birth. However, names are very unevenly distributed e.g. in the USA, where 

the top 50 first names make up 50% of the population and the top 1% of all last names 

90% of the population [8]. In addition, the birthday paradox states that you only need 

579 people to have a 99% certainty that someone has the same birth date 3  [9]. 

Consequently, common name combinations like John Smith are likely to share birth 

dates, and, henceforth, cannot be uniquely identified by only these three identifiers. 

Therefore, the place of birth is currently under consideration as an additional identifier 

for future EUPID versions in order to enhance the identification of individuals. 

The performance of record linkage systems depends not only on the underlying 

identifiers, but also on the applied record linking method. Therefore, the record linkage 

quality with different PPRL approaches including Bloom filters is currently evaluated 

for the EUPID services. 

1.3. Bloom filters 

Bloom filters are bit arrays whose binary digits that are set to 1 encode one (or more) 

string(s). At first, the string to be encrypted is split into bigrams4. Next, k numbers of 
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hash functions are applied on each bigram. As proposed by Kirsch et al. [10] and also 

recommended by Schnell et al. [11], a double hashing strategy can be used to implement 

k hash functions as a weighted sum of two independent hashing algorithms, e.g. SHA1 

and MD5. This is achieved with equation (1). 
 

𝑔𝑖(𝑥) = (ℎ1(𝑥) + 𝑖ℎ2(𝑥)) 𝑚𝑜𝑑 𝐿 (1) 
 

ℎ1 corresponds to the first hash function (e.g. SHA1), ℎ2 to the second (e.g. MD5). The 

index i ranges from 0 to k-1, while L is the length of the Bloom filter. The modulus of L 

makes sure that the resulting hash value is not bigger than the length of the Bloom filter. 

Next, the empty Bloom filter (an array of zeros with length L) is initiated and every 

position with index 𝑔𝑖 is set to 1.  

After encoding the strings, a similarity measure can be applied to the Bloom filters. 

Therefore, Schnell et al. [11] suggest using the Dice coefficient. The Dice coefficient D 

of two Bloom filters A and B is computed according to equation (2). 
 

𝐷𝐴,𝐵 =
𝑞 ∙ ℎ

𝑎 + 𝑏
 (2) 

 

When using bigrams q=2; h refers to the number of bits set to 1 in both Bloom filters; 

a and b represent the number of bits set to 1 on Bloom filter A and B, respectively. The 

resulting score has a value between 0 and 1. The higher this value is, the greater is the 

similarity between A and B.  

1.4. Cryptographic Longterm Keys (CLKs) 

Bloom filters can be used for field-based or record-level record linkage. Field-based 

means that every field is encoded into a separate Bloom filter e.g. one Bloom filter for 

the last name, one for the first name etc. Each encoded identifier is then compared 

separately. By contrast, a record-level Bloom filter first combines the values of all fields 

to a single string which is then encoded. Therefore, only one comparison per record has 

to be performed. Record-level Bloom filters were proposed by Schnell et al. [12] and 

they are known as Cryptographic Longterm Keys (CLKs). In respect to privacy, CLKs 

are superior to field-based Bloom filters, as it is harder to obtain, from which field the 

encoded information came from.  

1.5. Encoding of numerical data 

In record linkage, Bloom filters originally were introduced to encode strings. In the 

medical field, however, numerical data play an important role. In the context of EUPID, 

for example, numerical data may appear in the form of date of birth or place of birth.  

The place of birth can be represented in different ways, e.g. country name, city name, 

district name, street name, geocoordinates or some combination of the first four. Using 

geocoordinates has several benefits compared to the string representations: First, 

geocoordinates are independent of language. Second, they are stable even if places are 

renamed or cities merged. Third, they allow distance measurements, which can be helpful 

e.g. when a place is specified with differing levels of precision (e.g. street vs. district vs. 

city).  

Even though numerical values can be encoded in Bloom filters, simply by handling 

them as strings, this will not fulfil the purpose as e.g. numbers of similar values like 399 



and 400 would not be classified as being close. Therefore, a Bloom filter encoding 

method is necessary that reflects this property of numerical data. 

1.6. Objective of this paper 

The objective of this paper was the application of the numerical Bloom filter encoding 

for similar patient matching proposed by Vatsalan et al. [13] to privacy-preserving record 

linkage and the adaption of this approach to geocoordinates. 

2. Methods 

2.1. Test data 

Since real patient data were not available due to privacy reasons [14], synthetic data were 

created with an adapted version of a proprietary tool provided by AIT for generating 

realistic patient data for telehealth systems [15]. The resulting dataset included a unique 

ID, which was used for evaluating the record linkage process, gender, first and last name, 

date of birth, as well as longitude and latitude of the place of birth. The names were 

random combinations of first and last name typical for one of the following countries: 

Austria, Germany, France, Croatia, Iceland, Spain and the UK. For the date of birth, a 

day between 01.01.1900 and 31.12.2001 was randomly selected. The geocoordinates 

representing the place of birth were generated randomly within the boundaries of each 

country. Both longitude and latitude were floating point numbers with four decimal 

places. 

For testing the record linkage performance, duplicates were generated by 

manipulating already existing entries. For names, these modifications included typical 

typing errors like (a) the abandonment or addition of accents, (b) randomly omitted 

characters, and (c) an added space at the beginning or end of strings. Moreover, they 

included (d) the addition of the title ‘Dr.’. Dates of birth were modified by (e) the 

swapping of day and month, or (f) an error of ± one day. The geocoordinates representing 

the place of birth were randomly changed within a given radius. 

Moreover, similar non-matches were generated to test, if they result in false positives. 

These similar entries included patients with the same first and last name, patients with 

the same names as well as date of birth, and patients whose date of birth and place of 

birth were swapped (with changes to conform to the general data type). 

The test dataset consists of 3000 entries, from which 300 are duplicates and 242 are 

similar non-matches. 

2.2. Experimental setup 

A Python framework was implemented based on the open source 'Python Record 

Linkage Toolkit' [16] to compare and evaluate CLKs.  

2.2.1. Preprocessing 

Before creating the CLKs, names were converted to lowercase letters, and prepended 

with a space, to recognize the greater significance of the first character while eliminating 

errors that come from inadvertent capitalization.  



2.2.2. Encoding 

Three different methods for encoding geocoordinates were tested and compared with 

each other. For all three, the other identifiers (first name, last name and date of birth) 

were encoded in a CLK by using the above-described method of hashed bigrams. For 

splitting the strings into bigrams, the ‘ngrams’ function of the Python-based 'Natural 

Language Toolkit' (NLTK) [17] was used. The geocoordinates were added to the CLK 

using three different approaches: 

First (1), the geocoordinates were treated as strings and likewise encoded by the 

method of hashed bigrams. The second version (2) was like the first, except that the 

geocoordinates were shortened to two decimal places before encoding. Third (3), the 

geocoordinates were encoded using a method specifically established for numerical data. 

The used approach is based on the proposed methods for encoding floating point and 

modulus data by Vatsalan et al. [13]. Instead of treating the geocoordinate as a string and 

splitting it into bigrams, the whole value was hashed and included in the CLK. Moreover, 

several values, which lie in a predetermined range 𝑑𝑟 around the original geocoordinate 

g, were generated and encoded as well (see Figure 1). To determine these additional 

values, the range 𝑑𝑟  was split into 2b intervals, resulting in intervals with the width 

𝑑𝑖𝑛𝑡𝑣 =
𝑑𝑟

2𝑏
. Therefore, the list of values 𝐿[𝑖] = 𝑥𝑖  with length 2𝑏 + 1 can be computed 

with equation (3). 
 

𝑥𝑖 = 𝑔 + (𝑖 − 𝑏) ∙ 𝑑𝑖𝑛𝑡𝑣 (3) 
 

 

As geocoordinates are floating point numbers, it has to be made sure that the lists of 

values overlap for close geocoordinates. Generally, this will not hold true as e.g. for b=1 

and 𝑑𝑟=2 g=45.5 results in L[i]=[45.0 45.5 46.0] and g=45.6 in L[i]=[45.1 45.6 46.1], 

with no overlapping elements even though 45.5 is close to 45.6. The solution proposed 

by Vatsalan et al. [13] is the application of the following alignment (4). 

 

𝑛𝑒𝑤_𝑥𝑖 =

{
 
 

 
 

𝑥𝑖 , 𝑥𝑖  𝑚𝑜𝑑 𝑑𝑖𝑛𝑡𝑣 = 0

𝑥𝑖 − (𝑥𝑖  𝑚𝑜𝑑 𝑑𝑖𝑛𝑡𝑣), 𝑥𝑖  𝑚𝑜𝑑 𝑑𝑖𝑛𝑡𝑣 < 
𝑑𝑖𝑛𝑡𝑣
2

𝑥𝑖 + (𝑑𝑖𝑛𝑡𝑣 − (𝑥𝑖  𝑚𝑜𝑑 𝑑𝑖𝑛𝑡𝑣), 𝑥𝑖  𝑚𝑜𝑑 𝑑𝑖𝑛𝑡𝑣 ≥ 
𝑑𝑖𝑛𝑡𝑣
2

 (4) 

 

Moreover, geocoordinates have a limited range. For this case, Vatsalan et al. [13] 

present a calculation specification that handles modulus data, which jump back to the 

beginning of the range, that only include positive numbers (including zero) e.g. months 

[… 10 11 12 1 2 3 …]. Geocoordinates, however, include negative numbers, and while 

the longitude is modulus data, the latitude does not contain a leap but decreases/increases 

again when reaching the maximum/minimum of ±90° [… 89.9 89.9 90.0 89.9 …]. To 

comply with these characteristics the calculation specifications (5) and (6) were 

developed. 
 

For latitude: 

𝑓𝑖𝑛𝑎𝑙_𝑥𝑖 = {

2 ∙ 𝑚𝑎𝑥 − 𝑛𝑒𝑤_𝑥𝑖 , 𝑛𝑒𝑤_𝑥𝑖 > 𝑚𝑎𝑥
2 ∙ 𝑚𝑖𝑛 − 𝑛𝑒𝑤_𝑥𝑖 , 𝑛𝑒𝑤_𝑥𝑖 <  𝑚𝑖𝑛

𝑛𝑒𝑤_𝑥𝑖 , 𝑒𝑙𝑠𝑒
 (5) 

 

 



For longitude: 

𝑓𝑖𝑛𝑎𝑙_𝑥𝑖 = {

𝑚𝑖𝑛 + 𝑛𝑒𝑤_𝑥𝑖  𝑚𝑜𝑑 𝑚𝑎𝑥, 𝑛𝑒𝑤_𝑥𝑖 > 𝑚𝑎𝑥
𝑛𝑒𝑤_𝑥𝑖  𝑚𝑜𝑑 𝑚𝑎𝑥, 𝑛𝑒𝑤_𝑥𝑖 <  𝑚𝑖𝑛

𝑛𝑒𝑤_𝑥𝑖 , 𝑒𝑙𝑠𝑒
 (6) 

 

 

Figure 1. An example of numerical BF encoding of two similar geocoordinates when using b=4, L=30 and 

𝑑𝑟=0.5. 𝐷𝐴,𝐵 is the Dice coefficient of the two depicted Bloom filters. 

2.2.3. Parameters 

When using Bloom filters, several parameters must be chosen: First, all BFs have a fixed 

length L. Second, for encoding strings, the number of hash functions k with which every 

bigram is encrypted must be chosen. For encoding of numerical values according to the 

above-proposed scheme two more parameters need to be determined: b, which (just as 

k) regulates the number of created hashes, and the range 𝑑𝑟.  

For all test runs, values of L=1,000 and k=10 were adopted from Schnell et al. [12]. 

To assure comparability between the different tested encodings, b was chosen so that the 

numerical encoding of the place of birth results in a similar number of hashes compared 

to the string encoding method. With k=10, this means that b=60. The range 𝑑𝑟  was 

chosen according to empirical knowledge about the sizes of cities: If living in the same 

city, it is expected that the place of birth only deviates within 𝑑𝑟 = 0.5°. 

2.3. Classification and evaluation 

As CLKs are a record-level comparison method, only one Dice coefficient per record 

pairs was computed which was then directly compared to a threshold value of 0.9.  

Three key performance indicators were computed to evaluate the performance of the 

different encoding techniques: recall, precision and F1 measure.  

3. Results 

Table 1 lists the results of the three different tested encoding methods described in detail 

in section 2.2.2. 



 

Table 1. Attained recall, precision, and F1 score for all three test runs with the parameters L=1,000, k=10, 

b=60, 𝑑𝑟=0.5 and a threshold value of t=0.9. 

Test run No. Test run description Recall Precision F1 score 

1 string encoding 0.863 0.977 0.917 
2 string encoding with shortened geocoordinates 0.960 0.990 0.975 

3 numerical encoding 0.997 0.997 0.997 

4. Discussion 

As can be observed in Table 1, the first test run resulted in the lowest recall as well as 

precision. Shortening the geocoordinates to two decimal points instead of four increased 

both recall and precision. The best result for all three key performance indicators, 

however, attained test run 3, which used the proposed numerical encoding method. 

Especially the recall was significantly higher for numerical encoding than string 

encoding, showing that more true matches could be identified as such. The slightly better 

precision of numerical encoding may be explained by the usage of different hashing 

schemes for date of birth and place of birth, which prevents ‘overlapping’ of these two 

identifiers. Contrary, in string encoding, a bigram of numbers will result in the same 

index, no matter if it came from the identifier date of birth or the place of birth.  

Apart from inclining a higher precision, the usage of different hashing schemes also 

increases the privacy of CLKs: As all Bloom filters, CLKs are vulnerable to 

cryptoanalysis attacks. Even without the knowledge of the encoding parameters, it is 

possible to re-identify part of the sensitive information by exploiting frequency 

distributions [18]. Using different hashing schemes for different identifiers decreases 

exploitable frequency information as the same plaintext coming from two different fields 

results in a completely different 0-1-pattern. For further strengthening of privacy, also 

different hashing schemes for names and date of birth should be implemented. 

Other methods recommended to prevent (or attenuate) cryptoanalysis attacks are the 

usage of record-level Bloom filters e.g. CLKs, which were implemented in this research, 

and advanced hardening techniques like balancing or BLoom-and-flIP (BLIP) [19]. To 

reach an even higher level of privacy, somewhat homomorphic encryption can be applied 

to Bloom filters [20]. The approach proposed by Randall et al. [20] is based on ring 

learning with errors and can prevent frequency attacks. However, further enquiries 

regarding the drawbacks of these different methods for privacy enhancement need to be 

made as hardening techniques may have some vulnerabilities, and homomorphic 

encryption comes with increased computational expense and the need of a fourth 

independent party. 

Regarding the numerical encoding scheme proposed in this paper, further research 

should be conducted to show, if the results can also be obtained with real data.  
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