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Abstract. Changes in lipid homeostasis can lead to a plethora of diseases, raising 

the importance of reliable identification and measurement of lipids enabled by 
bioinformatics tools. However, due to the enormous diversity of lipids, most 

contemporary tools cover only a marginal range of lipid classes. To reduce such a 

shortcoming, this work extends the lipid species covered by Lipid Data Analyzer 
(LDA) to galactolipids and oxidized lipids. Appropriate mass lists were generated 

for MS1 identifications and the proprietary decision rule sets were extended for MS2 

identifications of the novel lipid classes. Furthermore, LDA was extended to enable 
identification of oxidatively modified fatty acyl chains. With these extensions, LDA 

can reliably identify the most important galactolipids as well as oxidatively modified 

versions of the 22 previously implemented lipid classes. Comparison with other up 
to date lipidomics tools show that LDA has a better coverage of the newly 

implemented lipid species. The extended version of LDA provides researchers with 

a powerful platform to elucidate diseases caused by perturbations in the oxidized 
lipidome. LDA is freely available from https://genome.tugraz.at/lda. 
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1. Introduction 

Being loosely defined as biomolecules that are soluble in nonpolar solvents [1], lipids 

form a diverse group of organic compounds, which are indispensable for living 

organisms. The aggregate of lipids in tissues, cells or organelles is defined as the 

lipidome. The structural diversity of lipids originates from various combinations of the 

two basic building blocks – ketoacyl groups and isoprene groups [2] – together with 

additional modifications. Based on these building blocks, lipids are categorized and 

classified. One new frontier is oxidative lipidomics, in which the lipids (particularly their 

fatty acyl chains) are modified under oxidative stress, by a process called lipid 

peroxidation. This process can be mediated either by free radicals or by enzymes, and 

results in a wide range of oxidized products that depend on the nature of the oxidant 

species [3,4]. The most prominent oxidation moieties are oxo, hydroxy and hydroperoxy 

modifications, but many other oxidations are possible (Table 1) [3]. 
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Table 1. Common oxidation moieties with their chemical structure and mass formula. 

Prefix Structure 
Fatty Acyl (FA)  

Mass Formula 
Prefix Structure 

Fatty Acyl (FA)  

Mass Formula 

oxo 
 

FA+O-H2 hydroperoxy 
 

FA+O2 

keto 
 

FA+O-H2 cyclopentane 

 

FA-H2 

epoxy 
 

FA+O-H2 bromo 
 

FA+Br-H 

furan 

 

FA+O-H2 chloro 
 

FA+Cl-H 

hydroxy 
 

FA+O fluoro 
 

FA+Fl-H 

epidioxy 
 

FA+O2-H2 iodo 
 

FA+I-H 

carboxy 
 

FA+O2-H2 nitro 
 

FA+NO2-H 

R: rest of the acyl chain, in case of esterified FA, esterified part; R’: rest of the acyl chain, non-esterified 
carboxy part. 

The biological role of oxidized lipids (Figure 1) in humans and other mammals 

depends on the location and nature of changes [5]. Roles in age-related and chronic 

diseases [6], atherosclerosis [7], and inflammation and immune response [8] have been 

reported. Mutagenic, carcinogenic and cytotoxic properties are thought to be connected 

to elevated levels of oxidized lipids [9]. In addition, the presence of oxidized lipids in 

biological membranes induces changes in physical properties such as fluidity, which can 

have an impact on the integrity of the membrane [5,10], causing apoptotic events [5,11]. 

As such, there is an imminent need for reliable methods for oxidized lipid identification 

and quantification. 

 

Figure 1. Structure of an oxidized lipid on the example of a diacylglycerol: DG(18:3/18:3[OH,OOH]); 

oxidation moieties are represented in red. 

Breakthroughs in mass spectrometry (MS) technologies have led to an increase in 

mass accuracy and resolution as well as advances in ionization modalities, allowing 

contemporary lipidomics approaches to qualitatively and quantitatively analyze the 

entire complement of lipids in biological samples [12]. This facilitates investigation of 

structures, functions and interactions of lipids as well as dynamics of the entire lipidome. 

Ferreri and Chatgilialoglu suggest that fatty acid analysis is already mature enough 

to translate test values into valid molecular diagnostics tools, but that the majority of 

oxidative stress tests available on the market use imprecise or non-optimized 

methodologies, while it would be more appropriate to include lipidomics approaches [13]. 

They further recommend educating health professionals on lipidomics to help them 

appreciate this approach, to enable investigation of lipid profiles of their patients and to 

use lipidomics to assist in deciding appropriate interventions in clinical practice. Thus, 

   

   

 

  

 

      

  

 

 

     

  

   

  

   

  

   

  

   

 

   

 

   

   

   

 

  

      



 

 

the objective is to use lipidomics methods in clinical protocols and recognize its strengths 

towards an integrated vision for optimal health [13]. 

Lipid Data Analyzer (LDA) is a powerful tool using decision rule sets to enable 

automated and reliable annotation of lipid species and their molecular structures in high-

throughput data from chromatography-coupled tandem mass spectrometry (LC-MS2) 

[14]. LDA uses a targeted approach: It first scans the MS1 spectra looking only for 

precursor ions previously defined in a mass list containing exact masses of the desired 

lipids. In a second step, the MS2 fragmentation patterns of the precursor ions are 

evaluated. Lipid annotation is controlled by so-called decision rule sets and a mass list 

of possible fatty acyl (FA) constituents. In LDA, lipids are annotated based on the 

available mass spectrometric evidence. Thus, the level of structural information may 

vary. The lowest level of evidence is identification by precursor mass only. However, as 

lipids of completely different structures may have similar (isobars) or even exactly the 

same mass (isomers), this method may lead to misannotations, because no structural 

confirmation can be derived from the MS1 identification. At this point, the fragmentation 

patterns of the MS2 spectra help in deriving more elaborate structural details. Information 

about headgroup and constituent FA chains can be derived, and even determination of 

their positions on the backbone is possible for a large number of lipid classes. 

2. Methods 

2.1. Datasets 

Dataset 1 - oxPC Standard: Raw data (a single file in Waters raw format, negative ion 

mode) was obtained from a study on oxidized phosphocholine (PC) standards [15], 

which was kindly provided by Maria Fedorova and Zhixu Ni. The investigated sample 

contained oxidized products of PC(16:0/18:1) and PC(16:0/18:2), verified manually. The 

sample was measured on an ACQUITY UPLC M-class (Waters Corp., Milford, MA, 

USA) using a reverse-phase column coupled online to a Synapt G2-Si mass spectrometer 

equipped with an ESI source (Waters Corporation, Milford, MA, USA) [15]. The dataset 

includes 3234 scans. 

Dataset 2 - Wheat Seeds: The raw data (81 files in mzXML format, positive ion mode) 

originated from a study on oxidized wheat seeds [16] and was kindly provided by David 

Riewe. Analytes were separated by a 1290 UHPLC device (Agilent Technologies, Santa 

Clara, Ca, USA) using a C8 reverse-phase column and mass spectral analysis was 

conducted using a Bruker Maxis HD device upgraded with a Maxis II detector (Bruker 

Corp., Billerica, MA, USA) [16]. The scans per file range from about 1500 to 2000. 

2.2. Tools 

MSConvertGui 3.0.1899.0 (part of the ProteoWizard package [17]) was used for 

conversion of raw data to ms2, mzXML and mzML files. The mass list for Lipid Data 

Analyzer 2.8.0_nightly [14] was generated using R 3.3.3 [18] in RStudio 1.1.383 [19] 

with the packages XLConnect [20], janitor [21], plyr [22], pracma [23], and data.table 

[24]. LPPtiger (hotfix2019-version) [15] and LipidMatch 2.0.2 [25] were used for 

benchmarking of results. MZmine 2.23 [26] was used for generating a peak area list 

according to the LipidMatch manual, with the help of the MZmine batch file included in 

the LipidMatch directory. 



 

 

2.3. Analysis Settings 

Dataset 1 - oxPC Standard: For LDA analysis, the setting Orbitrab_velos_pro_HCD, 

noIntensity with ms2PrecursorTolerance set to 0.1 proved to be the most reliable option. 

For generating the in-silico oxidation in LPPtiger, all settings were used at their 

maximum option (i.e. Oxidation-level: 3, Max modification sites: 8, with OAP, OCP, 

Lyso OAP and Lyso OCP as well as Prostanes boxes checked). For the identification 

itself, default settings were used, except for Overall score filter which was set to >70%. 

In Lipid Match, Retention Time Window was set to 0.6, ppm window to 200, Mass 

accuracy window to 0.2 and MS/MS Isolation Window to 2. 

Dataset 2 - Wheat Seeds: The setting Orbitrab_velos_pro_HCD, noIntensity proved to 

be the most reliable option for LDA analysis, with ms2PrecursorTolerance set to the 

standard value of 0.01. 

3. Results 

3.1. Mass List Generation 

LDA utilizes Excel spreadsheets for defining the search space (m/z values) in MS1 

spectra. A valid mass list contains columns for name, double bonds and chemical formula 

as well as columns for each possible adduct of the lipid subclass, whereupon each 

subclass is defined in a separate worksheet. Optionally, a retention time can be defined 

in a separate column for individual or groups of molecules to limit the search space and 

subsequently minimize misannotations on the MS1 level. LDA uses separate mass lists 

for positive and negative ion mode, respectively. 

 

Table 2. Implemented lipid classes: Head group composition and adducts in positive and negative ion modes; 

values in the H column are added to the formula C atoms*2 - double bonds*2 to derive the number of H atoms. 

Lipid 

Class 
Chains C H O P N S  Positive Adducts Negative Adducts 

MGMG 1 9 -2 9 0 0 0  [M+NH4]
+, [M+Na]+ 

[M+C2H3O2]
-, 

[M+HCO2]
-, [M-H]- 

DGMG 1 15 -4 14 0 0 0  [M+NH4]
+, [M+Na]+ 

[M+C2H3O2]
-, 

[M+HCO2]
-, [M-H]- 

SQMG 1 9 -2 11 0 0 1  [M+NH4]
+, [M-H+Na2]

+ [M-H]- 

MGDG 2 9 -4 10 0 0 0  [M+NH4]
+, [M+Na]+, [M+Li]+ 

[M+C2H3O2]
-, 

[M+HCO2]
-, [M-H]- 

DGDG 2 15 -6 15 0 0 0  
[M+NH4]

+, [M+Na]+, [M+K]+, 

[M+Li]+ 

[M+C2H3O2]
-, 

[M+HCO2]
-, [M-H]- 

TriGDG 2 21 -8 20 0 0 0  [M+NH4]
+, [M+Na]+ 

[M+C2H3O2]
-, 

[M+HCO2]
-, [M-H]- 

SQDG 2 9 -4 12 0 0 1  [M+NH4]
+, [M-H+Na2]

+ [M-H]- 

PC 2 8 0 8 1 1 0  [M+H]+, [M+Na]+ [M+HCO2]
-, [M-CH3]

- 

PE 2 5 0 8 1 1 0  [M+H]+, [M+Na]+ [M-H]- 

PG 2 6 -1 10 0 0 0  [M+H]+, [M+Na]+ [M-H]- 

PI 2 9 -3 13 1 0 0  [M+H]+, [M+Na]+, [M+NH4]
+ [M-H]- 

PS 2 6 -2 10 1 1 0  [M+H]+ [M-H]- 

TG 3 3 -4 6 0 0 0  [M+NH4]
+, [M+Na]+  

MGMG: Monogalactosylmonoacylglycerol; DGMG: Digalactosylmonoacylglycerol; SQMG: Sulfo-
quinovosylmonoacylglycerol; MGDG: Monogalactosyldiacylglycerol; DGDG: Digalactosyldiacylglycerol; 

TriGDG: Trigalactosyldiacylglycerol; SQDG: Sulfoquinovosyldiacylglycerol; TG: Triacylglycerol; PG: 

Phosphatidylglycerol; PC: Phosphatidylcholine; PE: Phosphatidylethanolamine; PS: Phosphatidylserine; PI: 
Phosphatidylinositol. 



 

 

In this project, an R script has been implemented that creates an appropriate target 

mass list for the new lipid subclasses: The head groups and possible adducts of the 

implemented classes (Table 2) can be defined in an Excel sheet and the script adds FA 

constituents covering a user-specified carbon atoms and double bonds range. 

Furthermore, the script adds oxidation moieties defined in another Excel sheet (Table 1) 

to the target lipids and to the mass list of possible constituent FAs. Atoms’ masses were 

obtained from an appropriate paper on atomic weights [27]. 

3.2. Rule Sets 

LDA uses plain text files for the specification of fragmentation rules. Each possible 

adduct defined in the mass list requires its own rule file, in order to facilitate an MSn 

identification. The file comprises four parts - GENERAL, HEAD, CHAINS and 

POSITION. The section GENERAL lists the number of chains and other common 

properties of the particular lipid class. The sections HEAD and CHAINS are further 

divided in a !FRAGMENTS and a !INTENSITIES part. The !FRAGMENTS part lists the 

fragment ions used for the identification of the headgroup and of the fatty acyl chains, 

respectively. The !INTENSITIES part can be used to describe intensity relationships 

between fragments in one of the previous !FRAGMENTS sections. Each fragment and 

intensity equation can be set as mandatory (or not), in order for an identification to be 

made. Additionally, the option other is available to define fragments originating from 

isobaric or isomeric species. Using these other fragments, a differentiation between 

species producing similar fragments can be made, and consequently the number of 

misannotations can be reduced effectively. The last section POSITION can be used to 

define intensity relationships between chain fragments in order to identify the sn-position 

of a FA chain. 

In this work, we assumed that the fragmentation spectra for oxidized lipids are very 

similar to those of unmodified lipids. Still, for the [M-CH3]- adduct of oxPC, the 

positional rules were removed, as they proved unreliable. Up to now, we could 

accomplish the support of the most important galactolipid classes MGMG, MGDG, 

DGMG, DGDG, SQMG, and SQDG by an extension of the algorithmic concept without 

developing novel fragmentation rule sets. 

3.3. Nomenclature for Oxidized Lipids in LDA 

As of now, notation guidelines for oxidized lipids are scarce and incomplete. Hence, 

many different approaches are being used [16,28,29]. We settled on adding an ox prefix 

to the lipid abbreviation to mark oxidized classes. The modification itself is enclosed in 

square brackets and written directly after the chain it concerns. Multiple modifications 

of different types are jointly enclosed in square brackets and separated by a comma. For 

multiple modifications of the same type, their number is simply added in front of the 

modification. Accordingly, the lipid oxMGDG(16:2[O,OH]_18:4[4OH]) carries an 

additional oxygen atom and a hydroxy (OH) modification on its 16:2 chain, and four 

hydroxy modifications on its 18:4 chain. 

3.4. Novel LDA Features 

To allow LDA to identify fragments of oxidized lipids in MS2 spectra, the list of 

considered fatty acyl chains (corresponding alkyl/1-alkenyl counterparts are included 



 

 

automatically), the target mass list and LDA source code had to be extended. First, a new 

column oxidation-state was introduced in the fatty acyls mass list in which the respective 

chain modification is listed. In the target mass list, the same column was introduced to 

allow LDA to filter combinations of FAs that do not have the same sum of modifications 

as the parent molecule. To illustrate this point further, the lipid species 

oxMGDG(36:6[O,OH]) could represent either oxMGDG(18:3[O]_18:3[OH]) or 

oxMGDG(18:3[O,OH]_18:3), but not oxMGDG(18:3[O,OH]_18:3[O,OH]). The ox 

prefix is programmatically added to the lipid whenever the respective oxidation-state cell 

is not empty. Concerning the decision rules, the algorithm looks for the respective ox 

rule first (for example, oxMGDG_NH4.frag.txt); but will fall back to the standard rule 

(for example, MGDG_NH4.frag.txt) to guarantee backward compatibility (i.e. can be 

used with FA mass lists and target mass lists without the oxidation-state column).  

3.5. Analysis of Datasets with LipidMatch, LPPtiger, and LDA 

Dataset 1 - With the preexisting knowledge of the sample containing PC(16:0/18:1) and 

PC(16:0/18:2). The sample was analyzed using LDA as well as LPPtiger and 

LipidMatch. For LDA, a mass list was generated for oxidation products between 

PC(34:0) and PC(34:2) with up to two additional oxygen atoms and up to three hydroxy 

modifications. In the following analysis, LDA annotated 19 oxidized lipid species in 

dataset 1 (Table 3). After manual inspection of the MS2 spectra, four identifications were 

considered to be false positives, as only fragments of low abundance were annotated and 

major fragments were left unannotated. LPPtiger and LipidMatch annotated eight and 

three lipid species, respectively, where one of the three LipidMatch identifications seems 

to be a false positive, as the m/z value doesn`t fit the molecule’s mass properly. 
 

Table 3. Lipid molecular species identified in dataset 1 by LDA, LPPtiger and LipidMatch; putative false 

positives are marked in gray; species’ names adapted to LDA shorthand notation. 

m/z LDA LPPtiger LipidMatch Adduct 

744.5 PC(16:0/18:1)  

adduct not implemented  adduct not implemented [M-CH3]
-  

758.5 oxPC(16:0_18:2[OH])  

760.5 oxPC(16:0_18:1[OH])  

772.5 oxPC(16:0_18:1[2O])  

774.5 oxPC(16:0_18:2[2OH]) 

776.5 oxPC(16:0_18:1[2OH]) 

778.5 oxPC(16:0_18:0[2OH]) 

790.5 oxPC(16:0_18:2[3OH]) 

792.5 oxPC(16:0_18:1[3OH]) 

802.5 PC(16:1_18:1)   

[M+HCO2]
- 

804.5 PC(16:0/18:1) PC(16:0/18:1)  

818.5 oxPC(16:0/18:2[OH]) oxPC(16:0/18:1[O]) oxPC(16:0_18:2[OH]) 

820.5 oxPC(16:0/18:1[OH])  oxPC(16:0/18:0[O]) oxPC(16:0_18:1[OH]) 

822.6 oxPC(16:0_18:0[OH])   

832.5 oxPC(16:0/18:1[2O])  oxPC(16:0/18:1[2O])  

834.5 oxPC(16:0/18:2[2OH])   

836.5  oxPC(16:0/18:0[O,OH])  

838.5 oxPC(16:0/18:0[2OH]) oxPC(16:0/18:0[2OH])  

850.5 oxPC(16:0/18:2[3OH]) oxPC(16:0/18:2[O,OOH]) oxPC(16:0_18:2[3O]) 

852.5 oxPC(16:0/18:1[3OH]) oxPC(16:0/18:1[OH,OOH])  

 



 

 

Dataset 2 - With the help of an R script, an LDA target mass list for lipids with up to 

four hydroxy modifications was created, which was subsequently used for data analysis. 

The relative number of lipids identified by LDA shows the same pattern as in the original 

paper (Table 4): Unoxidized species are most frequent and species get less frequent the 

more hydroxy modifications they carry. The same pattern holds true for the abundance 

of lipids vs. oxidized lipids. Neither LPPtiger nor LipidMatch reported results coinciding 

with the manual annotations shown by Riewe et al. [16]. 

 

Table 4. Number of unique lipid species identified in dataset 2 across 12 lipid classes by LDA vs. reported by 

Riewe et al. [16]; columns show the amount of hydroxy modifications added through lipid peroxidation. 

Lipid 

Class 

LDA Riewe et al. 

0 OH 1 OH 2 OH 3 OH 4 OH 0 OH 1 OH 2 OH 3 OH 4 OH 

TG 68 41 14 8 2 71 58 23 12 9 

DG 27 9 10 1 1 35 17 18 11 6 

MG 0 0 0 0 0 6 1 0 0 0 

PC 2 0 0 0 0 3 1 0 2 1 

PE 7 0 0 0 0 8 2 0 0 0 

PG 0 0 0 0 0 7 0 0 0 0 

PI 5 0 0 0 0 5 0 0 0 0 

LPC 0 0 0 0 0 12 4 1 0 0 

LPE 0 0 0 0 0 7 0 0 0 0 

LPG 0 0 0 0 0 2 0 0 0 0 

MGDG 6 3 2 0 0 6 4 3 0 0 

DGDG 20 3 4 0 0 20 4 5 0 0 

3.6. Comparison 

Apart from the unsupported [M-CH3]- adduct, LPPtiger reported similar results as LDA 

for dataset 1, whereas LipidMatch reported significantly less species. As a measure of 

performance, the F1 score was calculated for each tool. Here, LDA clearly outperforms 

the other tools with an F1 score of 0.86; the scores for LPPtiger and LM are 0.67 and 0.22 

respectively. False positives reported by LDA and the missed identification at m/z of 

836.5 are consequences of unoptimized parameters of LDA’s 3D peak detection 

algorithm. In this study, we utilized existing settings optimized for other instruments to 

quickly obtain a proof of principle of our MSn extension for oxidized lipids. E.g., when 

using the QTOF settings, a lipid PC(16:0/18:1[2OH]) is identified at m/z of 836.5 but 

other lipid species are missed. Differences in reported lipids at identical m/z values 

between LDA and LPPtiger are due to ambiguities in notation only, where LPPtiger is 

sometimes able to rank modifications by their probability (due to so called fingerprint 

spectra). For dataset 2, neither LPPtiger nor LipidMatch showed satisfying results: 

LPPtiger only works for phospholipids in negative ion mode and LipidMatch terminated 

prematurely without returning a result, probably because it does not explicitly support 

Bruker MS setups. 



 

 

4. Discussion 

LDA mass lists and decision rules were extended, which proved to be a reliable addition 

for the identification of MGDG, DGDG, SQDG, MGMG and DGMG, as demonstrated 

with dataset 2. Furthermore, LDA now supports identification of fragments of oxidized 

lipids in MS2 spectra. Benchmarking with LPPtiger and LipidMatch proved the validity 

of the concept and supplied evidence for LDA’s superior performance. 

4.1. Summary of the Challenges 

The two datasets were selected as they originate from well-conceived studies on oxidized 

lipids that allowed us to generate valid results and comparisons. However, neither LDA’s 

3D algorithm nor its decision rules were developed specifically for the instruments that 

recorded the data, whereas LPPtiger’s settings were optimized for dataset 1. 

In dataset 1, the identifications of LPPtiger and LDA are very similar, though LDA 

covers more adducts. The false positives can be clearly attributed to the inaccuracy of 

the data (masses differ up to 0.1Da) and non-optimized settings for handling the data. 

Currently, we assume that the small differences in the number of identifications in 

dataset 2 between the manual analysis by Riewe et al. and LDA originate either from 

stricter rules and mass tolerances used by LDA, or from non-optimized parameters of 

LDA’s 3D algorithm, or from both. 

4.2. Nomenclature and Ambiguity 

Even after immense efforts to create a more unified nomenclature (for example by the 

research team behind LipidHome [30], LIPID MAPS [31,32] or the group around 

Liebisch et al. [29]), and owing to the vast number of lipid species, it is still hard to 

compare lipid species reported by different authors. This is particularly true for more 

“exotic” lipid species, such as oxidized ones. 

For oxidized lipids, biochemists often use elaborate terms describing a molecule at 

high structural resolution, e.g. 1-Palmitoyl-2-(9-keto-12-oxo-10-dodecenoic acid)-PC 

[33]. It seems that using ox as a prefix has prevailed for shorthand notation of lipid 

classes, e.g. oxPC as used in the works of Reis et al. [3]. Following our suggestions for 

shorthand notation in LDA, the aforementioned oxidized lipid would be reported as 

oxPC(28:1[2O])) at the MS1 level, oxPC(16:0/12:1[2O]) at the MS2 level with known 

sn-positions of the FA chains and oxPC(16:0/12:1[9-O,12-O]) when the structural 

resolution allows assignment of modification positions. Oxo, keto, epoxy and furan 

modifications will not be discernible, as they have the same masses, and 

oxo/keto/epoxy/furan and hydroxy modifications differ only in two hydrogen atoms, 

which could be interpreted as the mass difference of a single double bond. A similar issue 

emerges when the fatty acyl includes a hydroperoxy modification which has the same 

mass as a hydroxyl-hydroxy modification, and when the chain includes epidioxide, 

which has the same mass as an oxo-hydroxy modification. This ambiguity cannot be 

resolved by typical high-throughput MS techniques, as the complexity increases the more 

oxidation modifications a lipid carries. Taking an extreme case, oxTG(54:6[4OH]) has 

the exact same mass as oxTG(54:2[4O]). Due to a lack of adequate nomenclature for 

such cases, researchers currently do not have any means to report such ambiguities. 

Nevertheless, information to resolve said uncertainties can be obtained by studies of 

fragmentation patterns or elution profiles, but such studies are lacking for most of the 

“exotic” oxidation products. 



 

 

The possible permutations of oxidized fatty acyls and resulting lipid species is 

enormous, but with this extension of LDA, an important step towards high-throughput 

oxidative lipidomics was taken. We anticipate to provide modification-specific 

fragmentation rule sets in future versions of LDA, offering yet another layer of 

verification. In the future, lipidomics approaches will replace outdated oxidative stress 

tests and provide personalized strategies in clinical practice.  
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