Evaluating Performance and Interpretability of Machine Learning Methods for Predicting Delirium in Gerontopsychiatric Patients
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Abstract. Delirium is an acute mental disturbance that particularly occurs during hospital stay. Current clinical assessment instruments include the Delirium Observation Screening Scale (DOSS) or the Confusion Assessment Method (CAM). The aim of this work is to analyze the performance of machine learning approaches to detect delirium based on DOSS and CAM information obtained from two geropsychiatric wards in Tyrol. From a machine learning perspective, the questions of these two assessment instruments represent the features and the ICD 10 diagnoses of delirium (yes/no) is the corresponding class variable. We compare seven popular classification methods and analyze the performance and interpretability of the learning models. As our dataset is highly imbalanced, we also evaluate the effect of common sampling methods including down- and up-sampling methods as well as hybrid methods. Our results indicate a high predictive ability of advanced methods such as Random Forest that can handle even unbalanced datasets. Overall, combining a good performance of a prediction model with the ability of users to understand the prediction is challenging. However, for clinical application in fully electronic settings, a good performance seems to be more important than an easy interpretation of the prediction by the user. On the other hand, explanations of decisions are often needed to assess other criteria such as safety.
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Introduction
Delirium is characterized by a temporary change (usually hours to days) in mental status and is often confused with depression, dementia and psychosis [1]. In a clinical setting delirium is an important patient safety indicator [2]. 
Popular instruments for classifying delirium include Delirium Observation Screening Scale (DOSS) or the Confusion Assessment Method (CAM). These instruments are commonly accepted in clinical practice [3]. Recently, machine learning methods have been used to predict delirium  [4, 5]. In these approaches, researchers commonly compare the predictive performance of different learning models such as logistic regression, support vector machines or neural networks. Very recently, Corradi et al. [6] used a Random Forest machine learning algorithm to predict delirium based on Confusion Assessment Method (CAM) and Electronic Health Record (EHR) data. The authors also used an under-sampling strategy to address the class imbalance. Also, Jauk et al. [7] very recently used a machine learning approach to predict delirium evaluating the impact of missing data. 
The aim of our work is to analyze the predictive ability of DOSS and CAM compared to popular machine learning approaches. In contrast to previous works we only use CAM and DOSS data and we use different machine learning models and methods for dealing with imbalanced data, with the aim to improve the performance of methods. The analysis of the interpretability of the models also is a further new aspect of our approach. 
Material and Methods
Dataset
CAM and DOSS data were scored and entered into the Electronic Health Record (EHR) by qualified nurses (DOSS) and physicians (CAM) in two geropsychiatric wards in Tyrol between 03.2019 and 10.2019. The questions of CAM and DOSS represent features and the ICD 10 diagnoses of delirium (yes/no) are the corresponding class variables of our two datasets. For instance, the first two  CAM features represent yes/no questions evaluating acute onset and fluctuating course: 1a) “Is there evidence of an acute change in mental status from the patient’s baseline?” and 1b) “Did the (abnormal) behavior fluctuate during the day, that is tend to come and go or increase and decrease in severity?” [8].
The documentation guideline stipulated to do the first delirium assessments at admission (within 48 hours at latest) and to repeat them on a weekly basis. In addition to the delirium assessments, information on the diagnosis of delirium (according to ICD 10 criteria) was documented by physicians for all included patients as gold standard (delirium YES/NO). 
The total number of included patients was 318 with 370 distinct stays. All CAM, DOSS and ICD data were retrospectively extracted, combined to CAM-DOSS-ICD triples according to documentation date (all three had to be documented in a time window of maximum 24 hours) and anonymized. The total number of triples was 1,320, comprising 1,271 controls (without delirium) and 49 cases (resulting from a sample of n=20 distinct patients with diagnosed delirium) according to the gold standard. Table 1 summarizes the considered datasets including number of features and instances. 
Ethical approval of this study was granted by the Ethical Committee of the Medical University of Innsbruck (EK Nr: 1032/2019). 




Table 1. Description of the considered datasets including number of features (without class variable) and samples. 
	Dataset
	Description
	Number of features
	Number of instances

	DSDOSS
	Collection of completed questionnaires using DOSS method
	14
	1320

	DSCAM
	Collection of completed questionnaires using CAM method
	5
	1320




Machine Learning Approach
We implemented the machine learning methods using the programming language R and caret package [9]. We used seven popular classification approaches that are summarized in Table 2, using a categorization based on Witten et al. [10]. The optimization of model parameters was based on caret default tuning parameter grid (see Table 3). 
We used a 10-fold cross-validation strategy to estimate the generalization performance of the learning models. More specifically, we divided the dataset into 10 partitions using 9 parts for training the model and using the remaining part for testing. 
We evaluated the final performance for predicting delirium using averaged Kappa statistic as evaluation measure. In contrast to accuracy, this measure is also a suitable measure if a skew class distribution is present [9]. Kappa is defined by
	(1)
where O is the observed agreement and E is the expected agreement under independence [11]. Thus, in simple words, Kappa shows whether a chosen classification approach was able to predict delirium. According to McHugh [12] values between 0.21–0.40 are considered as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect.
In summary, model tuning and evaluation is depicted in the following pseudocode (see also caret package documentation): 

for each parameter set do
	for each fold do
		determine hold-out samples
		fit model on the remainder
		predict hold-out samples
	end
	calculate average kappa across hold-out predictions
end
    determine optimal parameter set

Imbalanced class distribution can also have a negative impact on model fitting. Sampling methods address this problem by either selecting a subset of the majority class (down-sampling), replicate the minority class (up-sampling) or using a hybrid procedure. Consequently, we also implemented down- and up-sampling and SMOTE which is a hybrid procedure of up- and down-sampling and is described in [13]. 


Table 2. Categorization of classification approaches used in our study
	Method
	Category
	Description

	k-Nearest-Neighbor
	Lazy
	Classify instances based on the label of k-nearest neighbors 

	Naïve Bayes
	Bayes
	Probabilistic classifier assuming independence between features

	RPART
	Trees
	Recursive Partitioning and Regression Trees

	Logistic Regression
	Function
	Generalized linear model using a logistic link function

	Support Vector Machine
	Function
	Establishes a maximum-margin hyperplane

	Multi-Layer Perceptron
	Function
	Artificial neural network

	Random Forest
	Ensemble
	Creates a set of decision trees in each iteration of a bagging algorithm




Table 3. Tuning parameters for the considered classifier using caret R package [9]. 
	Method
	Tuning Parameters

	k-Nearest-Neighbor
	Number of neighbors 

	Naïve Bayes
	Laplace correction, distribution type, bandwidth adjustment

	RPART
	Complexity parameter

	Logistic Regression
	No tuning parameters

	Support Vector Machine
	Cost (using a linear kernel)

	Multi-Layer Perceptron
	Number of hidden units, weight decay

	Random Forest
	Number of randomly selected predictors



Results
The Kappa values and corresponding sensitivity and specificity values for the considered datasets are depicted in Table 4. 


Table 4. Kappa and corresponding sensitivity and specificity values for the current DOSS and CAM classification scheme.
	Dataset
	Kappa
	Sensitivity
	Specificity

	DSDOSS
	0.098
	0.878
	0.648

	DSCAM
	0.612
	0.959
	0.958




Table 5 summarizes the Kappa values for all considered classifiers and sampling strategies. 
The highest Kappa values for the DOSS dataset was obtained using Random Forest without sampling (Kappa = 0.29). The highest Kappa values for the CAM dataset were obtained using k-Nearest-Neighbor, Logistic Regression and Random Forest without sampling (Kappa = 0.65). The ROC curves for the two Random Forest models and the corresponding area under the curve (AUC) values are depicted in Figure 1. The resulting RPART decision tree for predicting delirium using DSCAM dataset is depicted in Figure 2. The decisions are built on variables “cam_1a” and “cam_1b”. 








Table 5. Kappa values for the applied classifiers for the considered sampling strategy (i.e., none, up, down and SMOTE sampling). 
	Method
	Dataset
	Kappa for sampling strategy

	
	
	None
	Up
	Down
	SMOTE

	k-Nearest-Neighbor
	DSDOSS
	0.051
	0.108
	0.115
	0.102

	
	DSCAM
	0.648
	0.525
	0.471
	0.528

	Naïve Bayes
	DSDOSS
	0.000
	0.150
	0.118
	0.188

	
	DSCAM
	0.446
	0.408
	0.374
	0.486

	RPART
	DSDOSS
	0.021
	0.128
	0.083
	0.131

	
	DSCAM
	0.534
	0.373
	0.327
	0.404

	Logistic Regression
	DSDOSS
	0.063
	0.126
	0.082
	0.097

	
	DSCAM
	0.648
	0.417
	0.359
	0.535

	Support Vector Machine
	DSDOSS
	0.000
	0.116
	0.085
	0.076

	
	DSCAM
	0.616
	0.539
	0.433
	0.531

	Multi-Layer Perceptron
	DSDOSS
	0.174
	0.151
	0.088
	0.098

	
	DSCAM
	0.581
	0.542
	0.542
	0.547

	Random Forest
	DSDOSS
	0.289
	0.228
	0.098
	0.157

	
	DSCAM
	0.645
	0.569
	0.513
	0.544
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Figure 1. ROC curves for the Random Forest classifiers with highest kappa for DSDOSS (left, AUC= 0.794) and DSCAM (right, AUC= 0.869) dataset.
[image: ]
Figure 2. RPART decision tree for the CAM dataset. The decision is based solely on variables “cam_1a” (first decision) and “cam_1b” (second decision if cam_1a is TRUE). The corresponding questions 1a and 1b can be found in section 2.1.
Discussion
We applied popular machine learning approaches to predict the clinical diagnosis of delirium using DOSS and CAM data only and considering different sampling strategies. Our machine learning approach using DSDOSS clearly outperformed the current DOSS classification procedure in terms of predictive ability (Kappa of 0.289 vs. 0.098). 
In contrast, the predictive ability using DSCAM was only slightly improved using a machine learning approach (Kappa of 0.648 vs. 0.612). 
The results indicate a good performance of the Random Forest classifier (highest Kappa values for DSDOSS and DSCAM respectively) even without using a sampling strategy. This can be explained due to the robustness of this classifier to imbalanced data [14]. In contrast, methods such as Naïve Bayes require sampling methods to generate a valid model from the imbalanced data. 
One general challenge of machine learning is whether users (for example physicians) are able to understand and interpret the predictions of a given model. Typically, we consider that decision trees can be easier understood and interpreted by physicians. From the approaches we tested, Recursive Partitioning and Regression Trees (RPART) use decision trees (see Table 2). RPART and comparable approaches are an extension of rule-based methods. The class of a newly unlabeled sample can be easily determined by traversing the tree from the root to the particular leaf that represents the class. Scientists can also easily interpret the importance of variables of a tree model because in general variables with higher importance are located in the upper part of the tree. 
Random Forest also uses decision trees and showed a high performance in our study. However, due their architecture using bootstrapping the resulting models are highly complex and interpretation and manual application by physicians is difficult. Overall, combining a good performance of a prediction model with the ability of users to understand the prediction is challenging. 
However, we may argue that understanding a prediction may not be that necessary anymore. The prediction algorithms implemented in the original CAM and DOSS instruments may also not be known in detail by the users. For clinical application in fully electronic settings with automated prediction approaches, a good performance seems to be more important than an easy interpretation of the prediction by the user. In this case, a physician may only use the prediction result (e.g., delirium risk or not) obtained from a model with a high predictive ability (such as Random Forest in our case). In contrast, clear explanations of decisions are often needed to assess other criteria such as safety [15]. 
Currently we used only features based on DOSS and CAM, which have to be documented manually. The usage of clinical routine data such as laboratory data and other available EHR data including nursing process data is part of our ongoing work. Here we want to test if it is possible to reach similar predictive performance by only using available data without DOSS and CAM information. But also combining DOSS and CAM information together may improve the predictive performance which has to be proven in further studies. For that we can rely on the solid gold standard which had been established in this work.
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